Unified Sumant Approximation Theorem

From Uncyclopedia, the content-free encyclopedia.
Jump to: navigation, search

Essentially, the Unified Sumant Approximation Theorem mathematically boils down to this:

Therefore, for sufficiently accurate approximation, a sufficiently accurate picture, with sufficiently accurate distances, you can sufficienly well guess the answer.

To find evenivity of an answer:

If the

then the answer is even

Else

the answer is odd

If the answer is even, then there is a very good chance that it is not the correct answer.


for discussion:

The area bound by the curves , and

a) (Note that one should never pick a tricky answer, they are always wrong)

b)

c) (Too even)

d)

e) (Too many digits, thus incorrect)

Left with the possible answers, and , consider the graph of the function , from , as well as the known area of the triangle with verticies

The area is a known or . Our graph is below the hypotenuse of this triangle.

Thus the answer is d)

Q.E.D.



Sumant's Other Theorems : Sumant's Theorem of Economics