# Half

Jump to: navigation, search

Something bigger than 0 and smaller than 1. Symbol for half is ½. Of glasses containing liquid, it is referred to as "~ full" or "~ empty", depending on whether you know that particular mind trick yet or not.

Halfprice car
Moli - Half of Mona Lisa
Half of sunflowers by Vin

${\displaystyle {{}^{1}}/{{}_{2}}={\mbox{half}}\iff {{}^{1}}/{{}_{2}}\times 2=1}$

## Magic formula for half

${\displaystyle {\frac {1}{2}}={\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}={\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}={\frac {\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}{{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}+{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}}}={\frac {\frac {\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}{{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}+{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}}}{{\frac {\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}{{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}+{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}}}+{\frac {\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}{{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}+{\frac {\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}{{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}+{\frac {\frac {1}{2}}{{\frac {1}{2}}+{\frac {1}{2}}}}}}}}}}}$Its a mountain of 1 and 2.

Compare with 2 (number)

## Adams

It is important to keep the constant Adam in mind when observing the number ½. Adam is an important subtopic in mathematics which allows the exploration of many new branches. When taking the integral of adam, with respect to adam, where adam is equal to ½, we find that the integral of ½ with respect to 1/2 is, strangely enough, 1/8 + C. And for his name of Adam ends with 'C', it follows in his thoughts that I am he ... Of Adam's halves the murderer shall be!

Adams can also be explored on a microscopic scale in the process of meiosis. For more information on this, ask Thomas Malthus (Co-founder of Adamatics). However, he may not be doing it.